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ABSTRACT: A synthesis is presented of methods of orbital trans-
fer by means of a small thrust, especially the 'direct" equations
expressing the coordinates of the mobile point as a function of
time, and the ''planetary’ equations which express the law of
variation of the parameters of an osculating orbit. It can be seen
that the latter equations are much more amenable to treatment,
especially if one takes the time average of the terms in order to
determine the "secular' variations. However, by means of
examples it is shown that the latter procedure is dangerous, and
that it is in any case preferable to utilize the dlrect equations.

I. CORRECTIONS IN THE PLANE

1. It is possible to decompose the acceleration of manoeuver (thrust divided /1%
by mass) either with respect to a terrestrial reference (R — positive radial
acceleration in a centrifugal direction, C — positive circumferential acceleration
in the direction of motion), or with respect to an orbital reference (T — tangential
acceleration, N — acceleration normal to the orbit and positive in the outer direc-

tion).

Denoting by’i,‘ ‘the angle between the tangent to the orbit and the horizontal,
we obtain the smaple formulas ;

By describing the motion in terms of osculating orbits (the osculating orbit
during a time t being the ballistic orbit the vehicle would follow if the thrust
would cease), we obtain the velocity components
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in terms of the semilatus rectum p and the eccentricity e, with 0 being the true anoma-~
ly, r the radius vector, and ¥ the azimuth with respect to a fixed direction, Since

do ~(1+ecdse)2, we obtain for the absolute value of the velocity

2 /2_

The problem can be treated from two different viewpoints: In direct form, by
writing down the differential equations of the motion; in "planetary" form, by regarding
the trajectory as an envelope of osculating orbits and writing down the differential
equations governing the variation of the orbital parameters. The second approach yields
more readily integrable equations, in any case if one agrees (by assuming the parameter
variations to be slow) to replace the fast varying terms, containing 0 or E, by their
mean values during one revolution (which causes, however, certain difficulties of
interpretation).

By a simple reasoning we can arrive at an immediate tentative conclusion. The
vehicle energy per unit mass is

This is true only if -is the semi major axis of the osculating orbit, On the other

hand the derivative of the éhergy is evidently vT if T is the tangential component of the
acceleration; if the object of the manoeuver is an enlargement of the orbit, the only
useful component of the thrust will be tangential component and we precisely obtain

whence

(3)

It would be premature, however, to conclude that in order to optimize an enlarge-
ment of the orbit the acceleration of manoeuver must be constantly tangential, This
condition maximizes the rate of variation of the total energy; but it might be more
convenient to maximize at first only the kinetic energy, in order to increase the
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In the present paper we confine ourselves to the case of constant acce
components, which is not compatlble with a "Program" -

2. Direct formulations

The equations of moti

4)
g is the
ation of
When the thrust is decomposed into its tangentlal and normal components the
original equations assume th
(%)

e angle‘ betwe’ | the orbit-and the horizontal, v the inst ntaneons velocity,

e re‘ uoed to a smgle equatmn one unknown

fied: The components of the acceleration /4

. lies the constancy of the absolute value and of

, , h respect to the vertical in case (4), and with respect

‘to the orblt in case (5), but in the 1a1tter case it is also necessary that N = O, which is
1 ' w that the N component does not yleld any useful




Such a reduction to a single equatlon can be of interest only for the purpose of a
manual solution. But this is not feasible, since the only resultant ;equatmn is generally
nonlinear and mtractable The only case in whlch the solutlon can >d ‘

of great interest in view of 1ts low efflcmncy, i.e., a radlal thr tis
perpendicular to the trajectory during the entire period in which the
practically circular., This case was discussed by Tsien [1]; as an mple, w
included an outlme of the discussion in an Appendix of the present Mema. .

3. The case of a thrust, constant with respect to the vertical

If R and C are constants, system (4) can be formally szmphfied by mtroducmg
dimensionless normalizing varlables We shall me m terms of r by writing

r=rX, the acceleratwns m te‘rms of o b i and the time by

"

By setting , andk;jthe
second equation ssume o

©)

_equation contains only x and its derivatives, /5

but this is a nonlinear equation, difficult to :éolve The only simple case is y= 0, in
which case equation (6) assumes the form s

and the constant reduces t ‘:' set (x =1). This is the case of a

purely radial thrust,
In any other case (in which R and C constant) equation (6)

cannot be reduced to a form directly am. _manual calculation, There
exist, of course, valid approximations if the constants are very small or very large.




4, The case of a constant purely tangential thrust

This is the most correct case from an energy viewpoint, In this case system (5)
assumes the form

(D
It is convenient to 1ntroduce as the new variable the trajectory arc s (referred to the
line[¥P = 0), in terms of which we have
,,,,,,,,,,,,,,,,,,, - T rd
gj dv dv |
ince 3= v =, the first equation becomes trivial
\ dﬁ{'é”\g— il =
i.e.,
}3 d V:, .ﬂ: }
, S Al .= Tv

This is the energy equation,

If the angle & varies by d ot at the two ends of an arc ds, corresponding to an az1— /6
muth variation dt? the rotation of the tangent about a fixed reference will be dt?
and the radius of curvature will be expressed as

L "d"r

1 - (dp )z e giv}
ds? )




Equation (8) yields

If the acceleration is imparted (at s = 0) to a vehicle describing a circular orbit of

. 2
radius L where v

. _ o , the constant will be equal to - _o and we obtain

n containing T and s only.
It was discussed by Benney [2].
It is possible to obtain more amenable equations for a numerical calculation by

proceeding from system (4') for the case that the acceleration is split into its radial
and circumferential components:

7

L taprxd -5y
vz 4"y

& x*¢) = xy

where the dots above the symbols denote the derivatlves w1th respect to the d1mens1on-

less variable 7 / g‘ / r, t. If the acceleration is tangential, we simply have

sinet, y = Acosi where A is the absolute value of the (normalized) acceleration and
1o is the angle between the tangent and the horizontal, i.e.,

-

dr _ do
'a't':'“ \'4 sin o o r HT = v cos at:

Denoting by 3} the normalized velocity W= v/ ‘/g r (ratlo of the absolute velocity
to the circular velocity on the original orbit), the above formulas go over into

we find




and finally, by solving with resp@ct to

/8

This is a system of 4 first-order equations, fully amenable to a céﬁiputer calcula~
~ tion, The system is completely general, i.e., A (which denotes F/ (mgo), ~where F is

~ the thrust) can be either constant or variable. ;

5. Formulation in terms of orbital parameters

If the thrust is in the plane, all the osculating orbits have the same inclination and
the same ascending node; hence the inclination i and the right as of the node
remain constant, The four remaining orbital parameters, i.e., e, w(semi major
axis, eccentricity, perigee anomaly with respect to the node) an -nto (where to is

the perigee transit time and n the mean angular velocity on the osculating orbit) are
variable,

The orbit is fully specified by a (t), e(t) and o (t); in fact, each group
values a , e and w specifies an ellipse of size a, shape e, and orientation|
envelope of these ellipses is the orbit, In order to define &, e and W as a function of £,
we need, however, a fourth variable, for example the true anomaly 6 or the eccentric
anomaly E, and in order to express the latter quantity as a function of time we must
which is variable during the manoeuver,

The problem simplifies if the variation of 2 and e can be regarded as slow as
compared to the variation of the anomalies, i.e., as compared to the orbital period;
if this is the case, it is convenient to neglect the "fine" variation of the parameters
(during the same revolution) and replace the functions of the anomalies by their mean
values over an osculating orbit. In this case it is sufficient to know the equations for /9
da/dt and de/dt, since the two equations do not contain other parameters, But, as we
already noted, such a procedure involves numerous difficulties, since the validity of
substituting functions of 8 or E by their mean values has not been properly established
a priori. ; , ~

The variation of the orbital parameters in terms of ""manoeuver' acceleration is
described by first-order equations of Gauss, For deriving them it ssible to use,
in addition to classical works, also the Technical Memo ELDO F 3 1 and 13; the
numbers in square brackets in the equations below refer to the corresponding formulas
of this Memo. '




and by expressing the derivative of 0 in terms of & ] In its turn the derivative
of 8 consists on the one hand of the "natural" var tion that would take place on an

osculating orbit even in the absence of a manoeuver acceleration and, on the other hand,
of the perigee displacement with changed sign

(13)

(If there would exist also an acceleratmn component P, perpendicular to the plane,
it would enter in d]w /dt; but we are discussing here manoeuvers in the plane).

The four equations (10)-(13) form a system with 4 unknowns which can be _[_1_(_)_ -
solved, in principle, for a, e, w and 6; if, however, the purpose of the manoeuver
acceleration is to effect an orbltal transfer the spemﬂcatlon of 9(t) does not present
any great interest and W (t) is likewise not 1mportant

6. 'Sécullar équations

The presence of 8 (or E) in the two sides of the equations specifies a "fine"
variation of the orbital elements during the same revolution; this fast variation is
superlmposed on a slow, progressive process, which is the only one of real interest
in a description of transfer. The exact procedure for a long-term descnptmn of this
process amounts to the construction of a complete solution of the system of four
equations and to replace, in the result, the functions of @ (or E) by their mean values
over each revolution (during which 0 or E vary in view of . Such a procedure
amounts, in fact, to considering the period of revolution as "infinitely small" as
compared to the transfer time constants,

S

A more recent approximation, very commonly used, though less hazardous,
involves the replacing of the terms in 8 or E by their mean values prior to the
integration; thus one obtains equations that are commonly known as ""secular' equations,
The validity of such an approximation is not very easy to establish a priori; the only
thing that one can say is that the approximation is definitely acceptable if the amplitude

i mf'mtel 7 small as comparecl to the mean value,




The scope of this approximation can be illustrated by elementary considerations; if

q ;
~ mation Willcertamly be correct To gwe an elementary example In the caseo

€., uatior \n‘whic,h the averagmg ope
performed prior e integration " The same applies to an equat on o

%Y- fy) [ a ~:+ﬁ=bcos t] which can be written as -a-—F(y)
to an equation g% f(y) P (t), where P is any periodic function of t

fcxw gr: /il

This is no longer true in the case of a system which could yield by elimination
(if possible) equations of order higher than the first, For example, the elementary
system,

yields

e

y=y(a+bcost)

which is a Mathieu equation. According to Floquet's theory we know that this equation

Bt

admits an integral of the form y = e" "P(f) with periodic P, hence of an average form

= P e! Loy ; but the exponent M is not necessarily to W as it would be the case when

- the average is taken prior to the integration,

Hd

Taking this into cons1derat10n it is evident in any case that the ""secular' equations
are much simpler than the orlgmal equations; moreover, since the averaging operation
leads to the vanishing of the unknown 6 (or E), the two equatlons for da /dt and de/dt
form a complete system (the other parameters do not occur in these equations). Let us
then construct these secular equations and discuss the solution, which we know to be
acceptable if the thrusts are very small,

The average must be taken with respect to time, over a period of revolution,
or with respect to § or E over an interval 2, provided that the function is multlplled
by a weight factor equal to the derivative of time with respect to 6 (or E):

where F is a function of time via 6 or E,
__The "period of revolution' can be approximated by the period of the osculating orbit, ﬂg_

 which is . In terms of n we have




L§

(We preferred to "center' the integration interval at the "zero' value of the variable;

this simplifies the calculation of the integrals, which simply vanish if the integrand is
odd).

For the use of (14) we recall the table of elementary relations:

- - 2 Sine
sin B = V1 -e* 15 cose

. e + cos b
cOSE'l+ecos€)

-e

-e

(1 - e cos EY(1 +

Sty S

sin E
l-e cos E |

1l - e cos E

sin © = 41 -e*
cos@ - cos E - e
e cosB) =1 - e?

1 - e cos E

de  1l+4e cosH

dE Vi - e?

V1 - e?

7. Thfﬁst; decdmpoéed into R and C

The derivation of the secular equations on the basis of (10) and (11) is elementary;

we shall see presently that the mean values of the coefficients of R, which are odd, are
simply vanishing; this leads to the conclusion that the radial component has no effect
on long-term transfer,

On the other hand we know that this is not true; if R exceeds go/ 8 (or B, =ik, /i
in the case of an original circular orbit of radius a ), a transfer of orbit can be effected

by a purely radial thrust. If R <g /8, the secular law of variation of the orbital
O ?

parameters is periodic with a long period; hence it would be incorrect to conclude that
‘2 and e are constant,

This reasoning shows once again the weakness of the secular approximation, unless

the accelerations are extremely small; for example in the case R = const a direct

solution shows that the periodic variation o

 R/g) if R is small,

10

is indeed very small (of the order of



‘The mean values of the coefficients of C in (9) and (10) are easy to evaluate:

2 (1+e cos 9 )2

«ft

E=—-—--— /(l—ecosh)cosEdE

1+e0059

: R

»--\_____/
1 + e eoa@ j_l_.___g_)___ /

By substltutmg into (9) and (10), we obtain the secular equations

-g-%= a \}P_C

| Me

! S

@ _ 3. [P (15)
dt = T2 % \p. i

We could likewise obtain (if the formula were of interest to us)

\ EE“ '\"& R .

These equations naturally coincide with the equations used by Burt [3].

8. Thrust, decomposed into T and N /14

The quantities R and C can be replaced by their expression (1) in terms of the
tangential and normal components of the acceleration, thus yiélding at once instead of
(9) the formula

da _ 2&
dt " pe VT (16)

where v is the instantaneous velocity expressed by

E k _%.. (1+e +ae cos 0 ) -
formula (16) bemg nothmg else but formula (3) expressing the fact that vT is the
derivative of the energy.

Similarly, by writing (10) in the form

11



where 1-ecosE = r/a, we immediately obtain (in view of (1) and (2) ):

It "}%E T - e { T™(1 + e cos 0)

b . : (X ;
Since r(1+ecose) = p, the coefflclent of T can be smxplified i. e. ,

o 3.._\5... a. . . 2
ot it Ul Gl ev. [l +et s 2e cos 9 i 4 ej v (e
which finally yields

e dé “ %
| dt“ ;,- {2(e+cose)T+N sin@}

(17

Formulas (16) and (17) are the equations utilized by ng—Hele [4]; the difference in the
sign of the normal component is simply due to the fact that King-Hele takes the positive
normal towards the interior,

The rate of displacement of the perigee (dx(}d /dt) has apparently a complicated _/_15_
expression; it can be simplified, however, by a small manual effort, yielding
; dw 1 y
VAt = oy { 27 sin O - N(e+ cos E)} (18)

9.‘ Sééﬁlér edﬁétions

As in the previous case, let us write the secular equations by replacing the functions
of 6 and E by their mean values., For substituting into (16) we must evaluate

: i " : e
} (VA S S TS /\/ 1+e cos E (1-e cos E)dE=
2m E -

l-e cos |
! , . W

A [ve g
'-;2\“ ﬁ—/ Vl..ez cnlE dE _’% %_E(e) X }

¢ ¢ e .

13

where E is a complete elliptic integral of the second kind, with modulus e, This yields

ge*aag‘ElT
o

d

ct
|
=
3

(19)

which reduces in the case of very small e to

12« oo



where K is a complete integral of the first kind,

The mean value of the coefficient of N is zero; hence we obtain

Bt (w-E)

it

If we evaluate the mean value of dm / dt (which is of 11tt1e use), we shall encounter
a surprise. The mean value of the coefficient of T is zero; hence we obtain

v T 2n }"o / cos EJl+e Z E
. cos E(1-e cos E) 4
= _2.._.._# ™ yl-etcost L

4 Ja_ 1 / elcos’ B 4p =___1{f_\/’§

14e cos E .
TIS'EGE“E (l e cos E)dE

Hence we obtain

If e is small, this yields




which is not compatible with the conclusion found in the case of a radial thrust, i,e.,

(22)

_ If the eccentricity is very small N and R tend to comclde but (21) yields for /17
c%_)_ a value tending to zero, while (22) yields a finite rate of varlatlon This is due to

the following reason: A constant acceleration N does not yield only a radial component
Vi-et R

Neosx =N V] EE“ E but also a mrcumferentlal component C = —Nsmef= -N |

e gin B

. ; by introducing these expressions into (11), the effects of the resultant
C and R tend to compensate themselves on the average, to within a term of the order of

2
e approximately,

This is an almost absurd conclusion, since in the case of zero e the quantity N would
yield only an R = N, which shows the subtlety of a "secular average' operation, As a
matter of fact, in the presence of an R or of an N, the eccentricity cannot remain zero,
thus causing a discrepancy between the two acceleratlons, this explains, in a form not
very accessible to intuition, the difference between the results.

10, Integration of secular equations

In the secular equations for the RC case the quantity R does not occur; only the
circumferential component appears to be useful. The equations are

da ” P ‘3/2 v 2 C
i — 2 C . 1..3 B
ﬁ\ t a }"e 32a v Po

i

| (23)
Lode_ 3. (R .32 PO
T S
(The "secular average' sign has been dropped for reasons of simplicity).
The system is very easy to solve; by taking the ratio of two sides, we obtain
de _ _ % e
da ” | a (24)
e., (denoting the initial values by the subscript 0™
5 ‘ 3/u
e = e, \‘(a, \ (25)
and by substltutmg 1nto the flrst equatmn (23) _/_1_§_
e ~ A.9i _C.

14



These are the equations utilized by Burt [3]. Equation (26) can be solved by a
quadrature, yielding t as a function of If the original orbit is circular, the
integral will be elementary:

If eois not zero, equation (26) can still be integrated in eXpIic‘it form, though not very

convenient, i.e,, by taking as the new variable, the time will be expressed in
the form of an elliptic integral of the first kind with modulus 75°, It is not appropriate
to dwell on this formal solution, whose cumbersomeness is out of proportion with the
uncertainty of the approximation; since e, is small, it is always possible to expand

{ 1 ~e2a, /a]"’§ % and to integrate the series.

When a 0/ a is known as a function of time, the eccentricity will be expressed by

(25), which shows that the eccentricity decreases constantly when the orbit is enlarged,
The eccentricity will always remain zero if e, were zero, which is a result that carries
1little conviction,

The case of | a purely tangential thrust can also be treated in secular form; the
secular equations are

) .‘?'.9. - 233,2 g. E T '
A ‘;f"?,m.v_ el s | (19)
\ de 4y 1-e* F gy A
L T T e e I',‘ & b W (20)
By taking the ratio of two sides of the equation, we immediately obtain
da e _E A
BoOoTEe e @
Despite its prohibitive look, this equation can be integrated "at sight", eE/ (1-e.2)
being in fact nothing else but the derivative of K-E with respect to e. /19
Hence

(28)

K-E is an increasing function of e; the eccentricity decreases, even in the present case,
when the orbit is enlarged; but at 8,7 0 the constant C must be zero, and the eccentri-
city will always remain zero!

If the initial eccentricity is not zero, we have C = ; by substituting into

from (28), we obtain the equation

(20) the value of

15



(29)

In principle, equation (29) solves the problem; by writing this equation in the form

(30)

i

it could yield the time by a direct quadrature, as a function of e,

The quardrature for the left-hand side of (30) can be performed (numerically, of
course) once and for all, since this term does not contain other parameters, After the
equation has been solved with respect to e, hence with respect to K-E, we can obtaln a
directly from (28). ‘

These equations are basically the same as those obtained by King-Helle [4], who
does not use, however, the symbols of elliptic integrals, but replaces them by
_oorrespondmg series, generally truncated at the second-order term, In particular,

fhe solves "once and for all" an approx1mated equation (26), obtammg O.c as a function of

"é"' [4, F1g 2]; he! concludes that the shape of the curve does not appreciably change
o

when e, varies. (But the solution will be erroneous if e, = 0l).

It can be noted (King-Hele) that by writing the equation which expresses de/da (the
variation of the eccentricity as a function of the major axis) in the form (24) or (27), the
acceleration of manoeuver is eliminated; the law e(o ) remains the same when the thrust
is changed from one revolution to another (we are dealing with equations that are zvahd /20

on the average) or perhaps switched off at intervals,

11. Some conolusions

We are drawn to the conclusion that the "planetary" formulation, which studies the
behavior of the parameters in time, is amenable to a fairly elegant mathematlcal
treatment (if we proceed from the secular equations), though it is a bit dangerous to
accept the results without any reservations,

On the other hand we deem it useful (in any case) to check the results of the
"planetary" formulation by a simultaneous integration of the "direct" equations with the
same parameters; this can be done independently of the solution of the actual problem,
by selecting the appropriate parameters, in order to be able to establish the limits of
validity., (We could see, for example, that the planetary formulation yields a zero
secular variation of & and e as a result of a purely radial acceleration, which is not
true at all and should be further examined).

16



i ~II.> CORRECTIONS OUTSIDE THE PLANE

12. Direct féfiﬁulatioﬁ , 'A /21

If the acceleration of manouever has a component along the normal to the osculating
plane (a ""binormal" component B), the orbit will change its plane, i.e., the planetary
coordinates i (inclination) and (2 (right ascension of the node) will be variable. In direct
, rential equations in terms of the radius vector r, the
azimuth'f, and the latitude /3, implying for example the components R, C and B. In
order to formulate the equations correctly, it is convenient to introduce a provisional
Cartesian coordinate system

y = r cosfp sin

with x and y in the original oscﬁlatihg plane, the x—cuoyoi"&ina‘te passing through the
vehicle, Hence the initial values of the original coordinates will be x=1r, y = z=0,.

=0and ¢ = 0.

Thus we obtain at once

ST g g

and the Cartesian equations

. Racpx/r* +R, F=-my/r 40, 8= b

go over into

Y = R e +r¢ +r p
a .

 :: d . -
3T (r? g)=1rcC (31)

#

-a

These equations are very complicated, even on the assumption that the acceleration /22
components are constant; it is not even possible to reduce the system to a single equa-
' tion containing r, as we did in the case B= 0,

}
i
{

. . The system can be solved, of course, by a numerical calculation, but this would
not facilitate the obtaining of synthetic conclusions. ‘

i

17



13. Formﬁlétibn in pl’aﬁétafy. coordihatesv

On the other hand a formulation in planetary coordinates appears to be very simple;
the B component does not occur in the expressions for ?11? and H—’ so that the conclusions

obtained hitherto with regard to the major axis and ,th” tricity remain unchanged; a

) goes over

correction term appears in the expression specifyi

(A slightly manipulated equation (39) of TM 33).

While the determination ) is not of great interest in the case of plane correc-
‘ s needed for the determination of orbital-plane varlations under the effect of

eration B, The two planetary coordinates i and A are specifxed in fact,\by the
equations

(32)

. Jiy(ysin(w— 9 ) B
e sin i

e

18




corresponds to (24) in [3].‘

For a circular orbit, all these orbital-plane changes are zero on the average; in
order to avert this, Burt proposes a reversal of the direction of the acceleration B at

the points at whmh-a— changes sign, i,e., according to (32) at the points where cos

+0) vanishes, By similar cons1derat1ons Burt suggests sign reversals of certain
variables in the case that the (instantaneous, not secular) derivative of the variable of
interest vanishes, This evidently makes it possible to prevent the secular derivative
from decreasing to zero or to an excessively small value as a result of a sign reversal
of the instantaneous derivative, This is evidently an efficient procedure, though of
doubtful practicability. Naturally, by reversing the sign of a thrust in order to speed up
the variation of one of the planetary coordinates, we may cause a reduction (or the
vanishing) of the mean variation of another coordmate, this may be unimportant if only
the first coordinate is of interest,

19



APPENDIX /24

ORBITAL ENLARGEMENT ‘
BY A CONSTANT VERTICAL THRUST

1. Statement of pfébléni

It is required, by proceeding from a circular orbit of geocentric radiuAs r, to

o’
enlarge the orbit until (possibly) escape, by using small thrusts that are constant
(during a limited time, of course), In a spherical potential field and in free space the
analytic problem is very simple. The following simplifying assumptions are adopted,
schematically represented in the form of 3 cases:

a) The thrust is purely radial (''vertical") and constant.

b) The thrust is purely "circumferential' (horizontal') and constant.

c) The thrust is tangential and the trajectory is constant.

Here we shall consider the case of a vertical thrust. Denoting by 0 the geocentric
azimuth with respect to the original vertical, the initial conditions will be

dr) _ | AL A
(ET)O T, (dk) o

where g6 is the gravitational force at the altitude of the circular orbit,

(1)

Denoting by R the radial acceleration (positive in the upward direction) and by C the
circumferential acceleration (in the direction of increasing 0), we obtain the equations of
motion

d%r -2, ) Y‘
ae (“‘“ -~

a '
#i 2l wnl @)

with the initial conditions.

2 Generai equatlon of i'édial (vevxv'tical)'fhrus‘t

‘With C = 0, the second equation (2) reduces to

r‘ 48 _ count
From the second condition (1) we obtain for the constant the valueV gorg. /25

Hence the equation for r assumes the form

®
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i.e

Ll ]

This equation can be integrated at sight, yielding

é.

[ SRR Srorets O CRVBNG )

By setting r = r(,’? , this equation goes over into

hence

do _ [g. Vle-1)(2pe? -p+1)

4l Yo P 2. . (4)

#

where (4 denotes the ratio R/ g,

Hence the radial velocity vanishes first of all at 0 = 1, which represents an initial
condition, and at the two roots of

2pp'~—p+1‘=:0@. (5)

which are complex if 8 V > 1, With a thrust R exceeding 1/8 of the force of gravity, it
is possible to achieve any distance (until escape).

3. Thrusts smaller than g d/ 8

If the thrust is smaller than this value (M < 1/8), the radial velocity vanishes at the
first root of (5), i.e., at

(6)

This has the value of two, i.e., the initial (geocentric) radius can be more than doubled
at the limiting value ¢ 1/ 8; at any other value of {4 the maximum distance that can be /26
reached is specified by (6).
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s ‘ab' cified by (4)

The time needed to reach the radms:p

. :‘yby deneting wit

with

When X<X; , the integral will be

with x = xlsm «f’ , the modulus of the elliptlc 1ntegrals being expressed by k = K /x2,
or, quite simply, by k= X, (since XX, = 1).

The time for a complete transfer to the new orbit is

‘ (®
complete elliptic integrals; the time becomes infinite (logarithmic) /27

where K and E den |

at X, = 1, i.e., at

The tangential velocity reached is specified by
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"‘orb1t ca be ¢

whereas the original veloci ‘

uilibrium velocity on the new orbit must
be S

Hence we have a tangential velocity deﬁcif of

i.'e,‘, a centrifugal acceleration deficit of

+ 1= 0, this is equal to

<2, . Thus the deficit is not compensated by the thrust R (except in the case

| that = 1; but in this case the time needed to attain the equilibrium radius will be

speclfles in fact an apogee, after which the body begins to fall despite
the presence of the thrust.

The fall trajectory naturally follows equation (3) as well, and hence equation (4),
where the square root must now be taken with negative sign, Thus the fall is halted
for a second time, at ¢ = 1, i.e,, at the original orbit; then the body begins to rise
again, The perlod will be double the time T specified by (8), i.e., infinite if

/28

At this value of the thrust the body 1s aetually following (
orbit, at the expense, of course, o uous thru
tangent1a1 velocity, ,

Thus we arrive at the conclusion that radial thrusts above 8 /8 are not practicable;

they can ized( however, for transferring the body to the apoge

zed by means of a tangentlal velocity increment

where the




Thus we would realize a transfer of circular orbit (limited, of course, to a radius
smaller than double the initial radius; yet the new orbit could perhaps be used as a new
parking orbit, even if the procedure is complwated) .

! valuate the charac r ty correspondmg to transfer

a means of a radial

AV

the thrust R will be spe01f1ed by

where M is the instantaheoﬁs mass, Since R is agsumed constant, we have during a
time T the formula

this is precisely the characteristic velocity with respect to the radlal thru.st The
characteristic velocity with respect to transfer will hence be «

In general, we may conclude that an orbital correction by means of a small radial
thrust is of interest only in the case of very small corrections obtained by low values of

... With /29

and since

the total characteristic velocity will be expressed as

hence to the relativ ;_incr ase of the orbital radius, For

in fact propor \
: (Whlch represents the circular velocity) is of




e initial orb

4. Thrusts 41*a'rgér“thaﬁjfg;/8f o

The equation expressing the time as a function of the 'rela‘tivéf radlus k«is*i the same as

before

where F.
holds for

Thus the tlm
known fact,

» than 1/8), the a




if we intend to use ordinary tables.

elocity when the total energy vanishes, i.e., when
oy replacing the express)i}ins for dr/dt and do/dt,

When Z}A > 1, the normalized escape radiusf}bt* will be smaller than 2 and formula
(10) can be utilized in its original form, Since

we find

;, 1, formula (12) will still hold, bu
it might be more convenient to write

Formula (12) coincides with Tsien's formula ([1], formula (17) ), apart from the
sign of E, which is erroneously given as "+" in [1]. .

_ The characteristic velocity ""employed" for escape is evidently Rt*,




5. Conclusions

The results can be summed up as follows:

With a very small radial thru
is limited to the relatlve quantity

which reaches the value 2 when 1/8. This orbital radius is reached W1th a tangential
velocity smaller than the circular velocity; as a result, the vehicle begins to fall, after
describing a trajectory Whlch is a mirror image of the ascendmg

Titrajectory, thus rejoining the original orbit, and so on, ThlS process occurs despite the
permanence of the thrust,

If the thrust were switched off at the apogee, the vehicle would follow an elliptic

vehicle to be mamtamed between the apogee and the orlgmal orblt
of course, not elliptic, but rather helical.

The orbit could be made circular at ry by means of a tangential thrust of the ay

in a much more efficient way than by means of a radial thrust. The tangentlal thrust

needed in this case corresponds to the difference between the circular Veloclty

4
1 is equal to —3-1' ; 1f the

thrust Would eease at this point (whieh is reached in fact only after an infinite tlme),

is equal to 2, and

gr ; the velocity mcrement AV, needed to make the orbit

circular at 2r0, would be equal [

the perigee would drop to

2 ;:1 ‘., half the original orbital Ve1001ty

The time needed to reach the apogee is of the order of the initial
case of slow thrusts, but it becomes mfmlte_ (logarzthmlc) a

alf-period in the

When the thrust exceeds the Value

‘ 1/ 8, there are no 11m1ts on the increase in
distance; in particular, at a distance .. :
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the vehicle attains its escape velocity, The time needed to attain the escape velocity is
specified by formula (12), which can be rewritten as

the modulu ing defined

by arccos -

When i /2 ~’eécape is achieved at a radius 2r_ in a time

i.ie.", during To/ 3 approximately. The time is smaller if the thrust exceeds one-half
the gravitation 8o
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